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Instability waves have been established as noise generators in supersonic jets. Recent
analysis of these slowly diverging jets has shown that these instability waves radiate noise
to the far field when the waves have components with phase velocities that are supersonic
relative to the ambient speed of sound. This instability wave noise generation model has
been applied to supersonic jets with a single shear layer and is now applied to supersonic
coaxial jets with two initial shear layers. In this paper the case of coaxial jets with normal
velocity profiles is considered, where the inner jet stream velocity is higher than the outer
jet stream velocity. To provide mean flow profiles at all axial locations, a numerical scheme
is used to calculate the mean flow properties. Calculations are made for the stability
characteristics in the coaxial jet shear layers and the noise radiated from the instability
waves for different operating conditions with the same total thrust, mass flow and exit area
as a single reference jet. The effects of changes in the velocity ratio, the density ratio and
the area ratio are each considered independently.
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1. INTRODUCTION

Since the beginning of jet aircraft transportation service, community noise created by jet
exhausts has been a problem. Increased awareness of noise pollution has hampered the
expansion of service from using predominantly subsonic aircraft to including more
supersonic aircraft. To lessen the community noise problem, many experimental and
theoretical studies have been performed to increase the understanding of the jet noise
generation process, particularly of those processes that are important to supersonic jet
noise. Basic understanding leads to means by which the noise generation process may be
modified and acceptable community noise levels provided from supersonic jet aircraft.

In this paper a method to modify the noise generating mechanism in supersonic jets is
examined. A single, axisymmetric jet is replaced by a dual stream, coaxial jet. The two jet
streams have different initial velocities and possibly different initial temperatures. The jets
are classified as having a normal velocity profile (NVP) if the inner stream velocity is higher
than the outer stream velocity and as having an inverted velocity profile (IVP) if the inner
stream velocity is less than that of the outer stream. This paper concentrates on NVP
supersonic jets. IVP supersonic jets are discussed in a companion paper [1].
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1.1.    

The interest in the measurement of the noise radiated from coaxial jets increased as the
by-pass jet engine was introduced as an alternative propulsion system to the noisy turbojet
engine. Early results as to whether or not any variation in the outer stream velocity had
any affect on the radiated noise were inconclusive [2]. With the consensus that the noise
reduction in by-pass engines was due to lower velocities at the same mass flow compared
to single jets, measurements were later made of noise reduction in cold coaxial subsonic
jets at constant thrust [3]. It was found that, by adding an annular outer stream U2 to the
axisymmetric inner stream U1 and reducing U1 while increasing U2 to maintain constant
thrust, the maximum noise reduction occurred at about U2/U1 =1 compared to the noise
generated by the inner jet alone. In effect, the jet exit area was increased and the jet velocity
decreased. Alternatively, by simply increasing the outer velocity U2 for a fixed inner
velocity U1, the maximum noise reduction occurred at a velocity ratio of 0·5. This apparent
noise reduction was confirmed by others [4, 5]. In addition, reductions were noted in high
frequency noise, including the peak of the jet noise spectrum, but there was an increase
in low frequency noise [5]. Olsen and Friedman [6] conducted a wide ranging study of
coaxial nozzles and flow conditions. Their results showed minimum noise levels at velocity
ratios of 0·4–0·5, with variations apparently due to changing area ratios. Thus, for subsonic
jets, there appeared to be lower noise benefits in using coaxial jets with normal velocity
profiles.

In the early studies of NVP coaxial jets, different methods of comparison were used to
quantify the amount of noise reduction that was achieved using a two-stream jet. This led
to confusion as to what exactly were the benefits of using coaxial jets. In order to provide
a rational basis for comparison and to clarify the previous jet measurement data, Tanna
[7] re-examined some of the normal velocity profile data, discussed earlier, and compared
the results to a reference jet at the same thrust, mass flow and exit area. His conclusion
was simply that subsonic NVP coaxial jets, with both inner stream velocity and
temperature greater than the outer stream, are noisier than the reference jet. A systematic
study of subsonic NVP jets confirmed this conclusion [8]. Given the constraint of constant
exit area, one stream will always have a velocity higher than the reference jet in order to
maintain constant total thrust and mass flow. Since the maximum velocity of a normal
profile jet persists longer than the maximum velocity of the single reference jet then, in
a Lighthill sense, the NVP jet will generate more noise than the reference jet.

Experimental work on coaxial jets was also conducted in the supersonic flow regime [9].
Using converging nozzles, the jets were operated above the critical pressure ratio, resulting
in underexpanded, shock-containing flows. A minimum noise condition was defined based
on overall sound pressure level measurements at upstream angles at which shock associated
noise dominates. For a fixed outer nozzle pressure ratio above critical, minimum noise was
found when the inner nozzle pressure ratio was slightly above critical, at about 1·9.
Depending on the initial velocities and temperatures of the two jet streams, this condition
was found to hold for jets with both inverted velocity profiles and normal velocity profiles.

With the shock associated noise virtually eliminated and schlieren photographs showing
the destruction of the outer jet repetitive shock structure at minimum noise conditions,
the remaining mixing noise at downstream angles to the jet axis was measured [9]. Test
conditions of constant thrust, mass flow and exit area, along with the added condition that
the inner stream be slightly supersonic to achieve minimum noise due to shocks, were used
to set the coaxial jet initial velocities and temperatures. As was found for shock-free coaxial
jets, normal velocity profile jets were noisier than the reference jet based on overall sound
pressure level measurements at 30 degrees to the jet axis.
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Much of the data from the reports discussed above has been used to develop models
for predicting noise radiation from coaxial jets. Noise measurements from different nozzles
at different conditions provided data for empirical models [10–12] and correlations [13].
A more theoretical approach based on turbulence modelling and Lighthill’s independent
noise producing eddies was proposed [14]. A turbulence model was used in calculating
mean flow properties, which were the only quantities needed for the acoustic calculations.
In a more elaborate approach, turbulence modelling was used to predict both mean flow
and turbulence variables [15–17]. With a model for the acoustic source of an elemental
jet volume based on local turbulence properties, these results were used in Lilley’s equation
to predict far field radiated noise levels and spectra. These models tend to agree favorably
with measured data since they all contain factors that were derived from measured data.
As an alternative to these models, we calculate noise radiation from instability waves
propagating in the shear layers of supersonic coaxial jets.

1.2.     

In supersonic jets, instability waves have been established as a dominant source of
mixing noise [18]. These waves, generated by the instability of the jet shear layer, radiate
noise when they have phase velocities that are supersonic relative to ambient conditions.
Initially, both shear layers will support growing instability waves. As the shear layers grow
and merge together, the growth rates and phase velocities of these instability waves will
be modified by this process.

Studies have been conducted of the existence of large scale structures or instability waves
in subsonic NVP coaxial jets [19–21]. Using microphones and hot wires to measure
pressure and velocity fluctuations, the presence of large scale structures was inferred in
both shear layers of the developing coaxial jet. As expected, the large scale structures in
both shear layers rotated in the same direction as those large structures found in a single
jet. Spectral measurements were made for various velocity ratios U2/U1. As measurements
were made in the radial direction, the peak in the spectrum shifted from being associated
with the inner shear layer to being associated with the outer shear layer as the velocity
ratio increased. The inner shear layer had the dominant spectral peak when U2/U1 Q 0·5
and the outer shear layer had the dominant spectral peak when U2/U1 e 0·5. As the
measurements proceeded downstream to the fully developed jet, the dominant shear layer
peak was the one that continued to exist. A smaller peak due to large scale structures in
the smaller shear layer disappeared, indicating that those structures decayed more rapidly.
Further examination of the spectral data showed that for U2/U1 Q 0·5 the dominant inner
shear layer peak had a higher frequency than the outer shear layer peak. This was due
to the higher convection velocity for the large scale structures in the inner shear layer
compared to that in the outer shear layer. When U2/U1 q 0·5, DU across the outer shear
layer is larger than that across the inner shear layer resulting in a dominant low frequency
peak in the spectrum. This peak is due to the lower convection velocity for the large
structures in the outer shear layer than in the inner shear layer.

Instead of relying on indirect measurements, a flow visualization study was conducted
of low speed, incompressible, coaxial jets in order to reveal the large scale structures in
the two shear layers [22]. The development of the instabilities into large scale structures
and their interaction as they evolved downstream was observed in each shear layer. A wide
variety of patterns was observed in the jet near field as the velocity ratio and the absolute
velocity were varied, with a fixed area ratio of 0·94 and density ratio of 1·0. For a velocity
ratio of 0·59EU2/U1 Q 1, the largest scale structures in the outer shear layer dominated
the flow dynamics, with only small instabilities seen in the inner shear layer. It was noted
in the study that, near a velocity ratio equal to one, wake-like instabilities were a factor
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in the flow dynamics. They had a greater impact on the flow development when the wake
was thinner and had a larger velocity deficit. At velocity ratios less than one, the
instabilities due to the wake quickly disappeared in favour of shear layer instabilities as
the velocity profile smoothed out.

Since large scale structures are modelled as instability waves, the local stability
characteristics for the shear layers in a coaxial jet can be calculated in the same manner
as the calculations are performed for single jets. A first attempt to do this was conducted
by Bhat and Seiner [23] for supersonic coaxial jets. The mean flow was described
analytically and it was known in the core region only. For the NVP jet with U2/U1 =0·52,
the outer shear layer stability characteristics were found to be similar to the equivalent
single jet stability characteristics. These results were in agreement with the trends observed
from the measured low speed coaxial jet data discussed above. However, because the mean
flow was not known beyond the end of the potential core region, the complete growth and
decay of the instability waves could not be obtained. The methodology that we follow
allows us to complete the growth and decay description of the instability waves in
supersonic coaxial jets and, subsequently, to calculate the radiated noise.

1.3.  

With the instability waves established as noise generators in supersonic jets when they
have phase velocities that are supersonic relative to ambient, the mixing noise radiated
from these waves when the jet is perfectly expanded has a directivity pattern with a
dominant peak in the downstream arc of the jet. Even when shocks are present in the jet
flow, the noise from the jet that radiates into the downstream arc is primarily due to
mixing, whereas the broadband noise associated with shocks dominates in the upstream
arc of the jet. Extensive measurements have shown this for single jets [24] and for coaxial
jets [25]. Hence, to a first approximation, we could conduct an analysis of the mixing noise
in the region in which it dominates, even if shocks were present in the flow. However, since
this is a first analysis of the instability wave nose generation model in supersonic coaxial
jets, we assume that the coaxial jets are perfectly expanded or, if not, that the jet operating
conditions are set for minimum noise where the flow has the characteristics of perfect
expansion downstream of a composite shock structure near the nozzle. This simplifies the
analysis and allows us to concentrate on profile shaping as a means of further reducing
the mixing noise. Many of the ideas behind this analytical approach are given in Tam and
Burton [26] and Tam [18]. These references refer to single axisymmetric jets and they
contain detailed comparisons between predictions and measurements of both flow and
acoustic properties. Here, we use these ideas in the extension of this approach to mixing
noise generation from supersonic coaxial jets.

In the analysis, the jet flow is decomposed into three parts: the mean flow, large scale
structures and fine scale turbulence. The equations of motion for each of these components
may be derived formally from the full equations of motion if it is assumed that there is
a sufficient separation of length and time scales between the large and small scale unsteady
motions. To proceed further, additional simplifying assumptions are required. First, it is
assumed that the gross properties of the large scale structures are controlled by weakly
non-linear mechanisms. Experimental observations in excited free shear flows indicate that
this is a good approximation, at least for the growing part of the structure’s evolution:
see, for example, Gaster et al. [27] for the two-dimensional shear layer and Petersen and
Samet [28] for the circular jet. Unsteady flow models have been developed for the excited
jet [29] and for the two-dimensional shear layer [30], based on this weakly non-linear
assumption. In these models it is noted that the large scale structures are quasi-periodic
in both space and time. Therefore, their properties are naturally, not just mathematically,
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described well by a wave-like form. This is consistent with their equations of motion being
locally linear. Further arguments to support the weakly non-linear nature of the growing
large scale structures are given in the appendix to Morris et al. [30].

As the large structures evolve in the axial direction, they extract energy from the mean
flow. From energy considerations, this causes the mean width of the jet shear layer to
increase. Predictions have been made to support the hypothesis that it is this process that
is the most important in the mean flow development in a two-dimensional shear and the
annular mixing region of a jet [30]. The details of the mechanisms by which the large scale
structures or instability waves transfer their energy to smaller scale motions is
unimportant, as far as the gross development of the mean flow is concerned. This process
is not well understood, but the details are likely to be highly non-linear. In the instability
wave model used here, for the noise generation and radiation process, it is assumed that
the interaction or energy transfer between the large and small scales may be described by
an eddy viscosity model. The value of this eddy viscosity should be much smaller than the
value used in Part 1 of this paper [31] to model the effects of turbulence on the development
of the mean flow, since the latter includes effects of both the large and small scale motions.
Thus the equivalent turbulent Reynolds number will be high. At high Reynolds number
for free shear flows, the inviscid and viscous solutions of the equations of motion are very
similar. Thus, as a final simplification, we assume that the decay of the large scale
structures may also be modelled by an inviscid approximation: as long as the inviscid
analysis is the correct limit for the infinite Reynolds number. This is discussed in more
detail below. It is acknowledged that this is a crude model for a complicated process;
however, the evidence from single axisymmetric jets indicates that it does not have a
significant effect on the noise predictions. Furthermore, in the present study of coaxial jets,
we have emphasized relative changes in the noise radiation due to changes in operating
conditions, rather than absolute predictions. Therefore, absolute accuracy and the precise
modelling of all details of the turbulent flow are not essential.

The instability waves in the inviscid model are inflectional instabilities of the
Kelvin–Helmholtz type. They have been shown to be the dominant instabilities in the jets

Figure 1. A schematic illustrating the inner (r, s= ox) and outer (r̄= or, s= ox) regions of the matched
asymptotic solution. The inner region including the jet flow is outlined by a thin dashed line (– – – –). The outer
region is outlined by a thin solid line (———) outside the jet.
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Figure 2. The cylindrical co-ordinate system centered on the nozzle exit.

of interest in this paper [32, 33]. As shown in Tam and Hu [34], there are other waves
traveling in the shear layer that have subsonic and supersonic phase velocities. In the
inviscid limit, the Kelvin–Helmholtz waves are analytically continued from growing to
damped waves. These other waves become neutrally stable without viscosity and do not
become damped downstream. Since they do not contribute to peak noise, they are not
considered here. The damped Kelvin–Helmholtz waves are found for both subsonic and
supersonic phase velocities [35]. The full analysis for the instability wave noise generation
model involves a large amount of algebraic manipulation. In this paper an outline of the
solution is provided. Many additional details may be found in Burton [36]. Tam and
Burton [26] and Dahl [37].

The analytical and numerical analysis provided the means by which to conduct a
parametric study of supersonic coaxial jets. We chose a reference single stream jet with
operating conditions that would be typical for a supersonic transport aircraft engine
exhaust. From these conditions, we defined the operating conditions for supersonic coaxial
jets that have the same total thrust, total mass flow and total exit area as the reference
jet. The study of normal velocity profile jets allowed variations in the velocity ratio, the
density ratio and the area ratio between the two jet streams to be controlled separately.
Thus, for example, the variation in the velocity ratio could be studied with the density and
area ratios fixed.

2. THE INSTABILITY WAVE AND SOUND FIELD SOLUTION

In this section the theory that governs the development of the instability waves in
supersonic jets and their identification as sources of noise radiated to the far field is
outlined. The formulation follows the approach of Tam and Burton [26] with the addition
of a non-zero free stream velocity [38]. Solutions are created that apply to separate but
overlapping regions, as illustrated in Figure 1. In the inner region, equations are developed
that apply to the slowly diverging jet and its immediate environs. After a multiple scales
expansion, the result to lowest order is a description of the instability wave in terms of
its local growth rate and phase speed. Next, the outer solution is developed after rescaling
the governing equations, since the disturbances in the outer region are acoustic in nature
and they travel in all directions with equal length scales. This is followed by the matching
process, where the inner and outer regions overlap, that completes the description of the
instability wave to lowest order. We then present expressions for the near field pressure
fluctuations and the far field directivity pattern. Finally, after describing the numerical
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procedures used to complete the calculations, we verify our procedures for numerical
accuracy and compare our numerically calculated results to analytical calculations for
single and coaxial jets.

2.1.    

The linearized equations of motion for small disturbances are derived from the following
compressible, inviscid equations of motion:

continuity,
1r

1t
+9 · (rV)=0; (1)

momentum, r$1V

1t
+V · 9V%=−9p; (2)

energy,
1p
1t

+V · 9p+ gp9 · V=0; (3)

where equation (3) is derived by combining the continuity equation and the state equation
for a perfect gas to eliminate the enthalpy from the original energy equation. These
equations have been non-dimensionalized by the following reference values: spatial
co-ordinates by R1, time by R1/U1, velocity by U1, density by r1, and pressure by r1U2

1 .
The subscript 1 is used to indicate jet exit conditions for a single jet or for the inner stream
of a coxial jet.

To linearize these equations we let

r= r̄+ r', V=V� +V', p= p̄+ p', (4)

Figure 3. Results for the local stability calculations at four different radial grid spacings: n=1; fD1/U1 =0·2.
----, Dr=0·008, N=250; 000, Dr=0·004, N=500; — - — -, Dr=0·002, N=1000; ———, D=0·001,
N=2000. (a) Phase velocity; (b) growth rate.
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Figure 4. A comparison of results from the stability calculations for a single jet: n=1, fD1/U1 =0·4. ----,
Calculated results using numerically generated mean flow as defined in Part 1 of this paper [31]; ———, calculated
results using numerically generated mean flow modified to match potential core length of measured data; w,
calculated results from reference [33] for mean flow defined with analytic functions. (a) Phase velocity; (b) growth
rate.

where the overbar denotes a mean flow quantity and the prime denotes a fluctuating
quantity; in this case, a small amplitude instability wave. Let us substitute equations (4)
into equations (1), (2), and (3). After expanding terms, subtracting the equations governing
the mean flow quantities, and neglecting higher order terms containing products of
fluctuating quantities, we get the linearized equations.

1r'
1t

+V� · 9r'+V' · 9r̄+ r̄9 · V'+ r'9 · V� =0, (5)

1V'

1t
+V� · 9V'+V' · 9V� +

r'
r̄

[V� · 9V�]=−
1
r̄

9p', (6)

1p'
1t

+V� · 9p'+ gp̄9 · V'+ gp'9 · V� =0. (7)

These equations have included the conditions that the mean flow is steady and that, for
a free jet, the mean static pressure is constant throughout the flow. Taking into
consideration that the mean pressure is non-dimensional and constant, it is easy to show
that gp̄=1/M2

1 , where M1 is the jet exit Mach number.

2.2.     

A cylindrical co-ordinate system centered on the nozzle exit, as shown in Figure 2, is
used for axisymmetric jets. The cylindrical co-ordinates (r, u, x) have corresponding
velocities (v, w, u). For supersonic jets, the mean flow changes slowly in the axial direction
and is represented by [26]
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V� =(ov̄1(r, x), 0, ū(r, x)). (8)

Outside the jet, as r:a, the ambient mean flow conditions are

V� =V�a =0o v̄a

r
, 0, ūa1, r̄= r̄a. (9)

The o in equation (8) represents the rate of spread of the jet mixing layer, which is small
for supersonic jets and, hence, o is the small parameter of the problem.

To construct the inner solution, we transform the axisymmetric co-ordinate (r, x) to
(r, s), where s= ox is the slow co-ordinate. The fluctuating disturbances are then
represented as an asymptotic series of waves travelling through a non-uniform medium,
which in this case is the mean flow of the jet [26, 39]. For example, the fluctuating pressure
disturbance is

p'(r, u, x t)= s
a

m=0

dm (o)p̂m (r, s) exp$i0f(s)
o

+ nu−vt1%, (10)

where f(s) is an axial phase function and dm (o) is the gauge function with d0(o)=1, and
the higher order terms, mq 0, have functional forms for dm (o) that are found from the
asymptotic expansion of the outer solution in the matching process.

After writing the linearized equations (5)–(7) of continuity, motion and energy, in
cylindrical co-ordinates, transforming to the (r, s) co-ordinates and applying the expansion
represented by equation (10), we partition the equations into terms according to dm (o),
combine the set of equations in favor of p̂m and cast the resulting equation into the form

12p̂m

1r2 +$1r +
2a

v− aū
1ū
1r

−
1
r̄

1r̄

1r% 1p̂m

1r
+$r̄M2

1 (v− aū)2 −
n2

r2 − a2% p̂m =Gm (r, s), (11)

where a is the axial wavenumber related to the axial phase function f(s) in equation (10)
by df/ds= a(s). The right side term Gm depends on lower order terms only. To lowest
order, m=0, G0 is zero and the equation is homogeneous. The homogeneous form of
equation (11) is commonly called the compressible Rayleigh equation.

Outside the jet, equation (11) reduces, for p̂0, to

12p̂0

1r2 +
1
r

1p̂0

1r
+$r̄aM2

1 (v− aūa)2 −
n2

r2 − a2% p̂0 =0. (12)

Equation (12) is Bessel’s equation, with a solution of the form

p̂0 =A0H(1)
n (ilr)+B0H(2)

n (ilr). (13)

The functions H(1)
n and H(2)

n are the nth order Hankel functions of the first and second kind,
respectively, and

l(a)= [a2 − r̄aM2
1 (v− aūa)2]1/2. (14)

The branch cuts for equation (14) are chosen to ensure that the function decays for large
r. It can be shown that the complex value of l(a) must be in the range

−p/2E arg l(a)E p/2. (15)
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To generalize, the lowest order solution of equation (11) has two linearly independent
solutions zp

1 and zp
2 that are functions of r and s. The amplitudes of these functions will

vary with axial location, giving a solution of the form

p̂0(r, s)=A0(s)zp
1 (r, s)+B0(s)zp

2 (r, s). (16)

As r:a, equation (16) must be equivalent to equation (13), and as r:0, p̂0 must be finite.

2.3.  

In the region outside the jet, the ambient conditions r̄a and ūa are uniform.
Disturbances that travel in this region are independent of the co-ordinate system. Hence,
distances travelled by the disturbance in any direction will be of the same scale. Using the
cylindrical co-ordinate system of the inner solution, the axial co-ordinate was rescaled as
s= ox. To bring the radial co-ordinate in the outer region to the same scale, we let r̄= or
be the scaled radial co-ordinate.

To obtain the outer equations, we substitute equation (9) into equations (5), (6) and (7),
transform them from the (r, x) co-ordinates to the (r̄, s) co-ordinates, and apply the
azimuthal and time dependencies exp(inu−ivt).

The solution to the outer equations is found by taking the Fourier transform of the
disturbance variables converting from the spatial variable s to the transform variable k.
For instance, the Fourier transform pair for the pressure disturbances is as follows:

Fourier transform; p̃(k)=
1
2p g

a

−a

p'(s) e−iks ds; (17)

inverse Fourier transform; p'(s)= g
a

−a

p̃(k) eiks dk; (18)

After applying the transform, we arrange the equations and combine them to obtain a
single equation in terms of the transformed disturbance velocity ũ. That equation can be
transformed into the form of a Bessel equation, the right side of which is non-zero but
very small [26]. We then obtain an approximate solution, valid to order o2,

ũ0Cya/2H(1)
q (ijy1/2), (19)

where

y= r̄2 − o4r̄aM2
1 v̄2

a, a=−ior̄aM2
1 (v− okūa)v̄a,

j2 =
1
o2

(o2k2 − r̄aM2
1 (v− okūa)2), q2 = n2 − o2r̄2

aM4
1(v− okūa)2v̄2

a,

and H(1)
q is a Hankel function of the first kind of order q, that satisfies the outgoing

wave or boundedness condition as r̄:a. The factor C may be found from the inner
boundary condition for the outer transformed velocity ũ as y:0 and r̄:0. As suggested
by Figure 1, the source of the disturbances outside the jet is the instability wave. Thus,
the outer disturbance velocity u'(r̄, s) must converge towards the inner disturbance
velocity as the outer solution approaches the inner boundary condition for the outer
region. In essence, the inner boundary condition for u'(r̄, s) has the instability waveform
suggested by equation (10) [40]. At this point, the form of the inner boundary condition
is generalized by some amplitude and phase, A	 (s, o) exp(if(s)/o), that will enable the
matching process to proceed in the subsequent development of the solution. To
determine C in the Fourier transformed domain, we transform the inner boundary
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condition using equation (17),

g(k, o)=
1
2p g

a

−a

A	 (s, o) eif(s)/o e−iks ds. (20)

Hence, as r̄:0, ũ:g(k, o). Therefore,

ũ0 g(k, o)ya/2H(1)
q (ijy1/2). (21)

Finally, using the transformed equation that relates ũ to p̃, we use the inverse Fourier
transform to obtain the outer solution in the form

po(r̄, s)=g
a

−a

g(k, o)$1+ i
o3

v− okūa

v̄a

r̄
1

1r̄%{ya/2H(1)
q (ijy1/2)} eiks dk. (22)

2.4.    

The inner solution results from asymptotically expanding the equations that apply to
the inner region. As a consequence, it does not satisfy the outer boundary conditions of
the problem that lie in the outer region. Conversely, the outer solution does not satisfy
boundary conditions that are in the inner region. Each part of the problem has missing
conditions that are satisfied by the process of matching the two solutions using the
intermediate matching principle [26, 41]. The intermediate matching principle defines an
intermediate variable and expands the inner and the outer solutions in terms of this
variable. These two intermediate solutions must overlap in some domain whereby the
difference between the inner and the outer solutions must vanish to the appropriate order
in the intermediate limit.

The intermediate variable is defined as

r̃= ro1/K, (23)

where K is a large positive number. In terms of the outer variable r̄, we obtain

r̄= or= r̃o1−1/K. (24)

This substitution is used in equation (22) to transform from the (r̄, s) co-ordinates to the
(r̃, s) co-ordinates. The resulting equation is then asymptotically evaluated as o:0, keeping
r̃ fixed. This is the intermediate limit. To accomplish this evaluation, we first let h= ok
in equation (20) and use the saddle point method to obtain an asymptotic solution for
g(h/o, o). This result is substituted into equation (22) and again, after letting h= ok, the
integral is asymptotically evaluated by using the saddle point method. This method is
described in both Bender and Orszag [42] and Dingle [43], with further details specific to
this evaluation given in Dahl [37]. After much algebraic manipulation, the intermediate
limit to lowest order for the outer solution is given by

po(r̃, s)0 eif(s)/oA�0(s)H(1)
n (il(a)o−1/Kr̃)+O(o ln o). (25)

We now want to match the outer solution expansion to the inner solution expansion
in the intermediate co-ordinates. Using the lowest order form of equation (10), with
p̂0(r̄, s) represented by equation (16), we first replace the radial co-ordinate by the
intermediate transformation r= r̃o−1/K. Next, the intermediate limit for the inner
expansion is found by letting o:0 with r̃ fixed. This results in the intermediate radial
parameter in the general functions in equation (16) becoming large. Since for a large radial
argument equation (16) approaches equation (13), then in the intermediate limit zp

1:H(1)
n
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and zp
2:H(2)

n . Thus,

pi
0(r̃, s)0 eif(s)/o[A0(s)H(1)

n (il(a)o−1/Kr̃)+B0(s)H(2)
n (il(a)o−1/Kr̃)]+O(o ln o). (26)

Comparing equation (26) with equation (25), we see that

A0(s)=A	 0(s), B0(s)=0. (27, 28)

This result and the condition of finite value at r=0 turns the m=0 solution of equation
(11) into an eigenvalue problem with solutions only for certain values of the eigenvalue
a.

A complete solution of the problem to O(1) may be found by analyzing the equations
for the expansion terms m=1 and m=2 and performing the higher order matching
process [26, 37]. The results would show the changes in A0(s) due to a slowly diverging
jet mean flow. The effect of flow divergence on stability results from supersonic jets is small.
Tam et al. [32] neglect this effect in calculating the instability waves in a Mach 2 hot jet.
In an extension of the model to include a wide spectrum of frequencies. Tam and Chen
[44] assume that the validity of the model would not be affected by neglecting the flow
divergence. The same assumption is made for instability wave calculations in supersonic
elliptic jets [45]. The instability wave characteristics are then governed by the local
eigenvalues at each axial location, known as the locally parallel flow approximation. The
growth and decay of the instability wave is then governed solely by the spreading of the
mean flow and the effect of the change in the eigenfunction shape with axial distance is
neglected. We will follow this assumption in our estimates of the instability wave
characteristics in supersonic coaxial jets. Thus, the amplitude function in the lowest order
form of equation (20) becomes a constant,

A	 0(s)=A
 0, (29)

and the phase term is found from

f(ox)/o=g
x

0

a(x) dx. (30)

2.5.   

The near field pressure disturbances outside the jet are found from an asymptotic
expansion of equation (22). To O(1), the pressure disturbance equation, including the
azimuthal and time dependencies, is

p'(r, u, x t)=g
a

−a

g(h)H(1)
n (il(h)r) eihx einu e−ivt dh, (31)

where

g(h)=
1
2p g

a

−a

A
 0 eifx(ox)/o e−ihx dx. (32)

Equations (31) and (32) take the axial evolution of the nth mode spatial instability wave
described by A
 0 exp(if/o), Fourier transform it into wavenumber space, multiply it by a
‘‘propagator’’ function H(1)

n , and then inverse Fourier transform the result back to physical
space. In essence, the instability wave is considered as the source in a radiation problem
in which, in the near field, there are both propagating and non-propagating waves. It is
the propagating waves that reach the far field as sound.
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2.6.   

To obtain an estimate of the sound radiated to the far field, it is convenient to transform
equation (31) from cylindrical to spherical co-ordinates using

x=R cos c, r=R sin c. (33)

The resulting integral is evaluated for large R by the method of stationary phase [46]. The
far field pressure is then used to determine the sound power radiated per unit solid angle
[47],

D(c)= 1
2 =p'=2R2 =2

=g(h̄) =2
[1−M2

a sin2 c]
, (34)

where the stationary phase point h̄ is given by

h̄=
r̄1/2

a M1v cos c

(1−M2
a)(1− M2

a sin2 c)1/2 −
r̄aM2

1 ūav

1−M2
a

(35)

and c is the polar angle.
To find the angular dependence of g(h̄), equation (35) must be solved for c in terms

of h̄. When this is done, we find that solutions only exist for h̄Q h̄c , where

h̄c = r̄1/2
a M1v/(1+Ma), (36)

limiting c such that 0EcE p/2.

2.7.  

Equation (11) must be solved numerically to obtain results for various flow conditions
in a supersonic coaxial jet.

2.7.1. Eigenvalue problem
Finite differencing equation (11) for m=0 is one of the alternatives for obtaining a

numerical solution to the eigenvalue problem [48, 49]. It is easily applied using the same
evenly spaced r-grid on which the mean flow was calculated and it provides a simple means
to determine an initial guess for the eigenvalue. We rewrite equation (11) as

12p̂0

1r2 +$1r +
2

c− ū
1ū
1r

−
1
r̄

1r̄

1r% 1p̂0

1r
+$r̄M2

1 0vc1
2

(c− ū)2 −
n2

r2 −0vc1
2

% p̂0 =0, (37)

where c=v/a. For the spatial stability problem, v is real and c is complex, c= cr +ici

(as is a= ar +iai ). Changing the eigenvalue from a to c confines the range in which the
eigenvalue lies in the complex c-plane. Given any real v, the eigenvalue c will have a real
part, cr , that is within or near the bounds set by the real mean velocity ū. Thus, c is easily
found compared to a and the numerical technique is more easily controlled, since c lies
within a limited range. Furthermore, in the initial region of a coaxial jet with two thin
shear layers and two eigenvalues, using c as the eigenvalue allows easy identification of
which c belongs to which shear layer.

For eigenvalues representing growing waves, we apply central differencing to the
derivatives in equation (37) and rearrange into tridiagonal form to obtain the following
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difference equation

[1− 1
2Z1kDr ] p̂k−1 + [Z0kDr2 −2] p̂k +[1+ 1

2Z1kDr ] p̂k+1 =0, (38)

where

Z1k =$1r +
2

c− ū
1ū
1r

−
1
r̄

1r̄

1r%k

and

Z0k =[r̄M2
1 (v/c)2(c− ū)2 − n2/r2 − (v/c)2]k

are known at each interior grid point k=2, 3, . . . , N.

2.7.2. Boundary conditions
The inner boundary condition for equation (37) depends on whether the eigenfunction

is axisymmetric, n=0, or non-axisymmetric, n$ 0. Axisymmetry requires that the
eigenfunction have a zero first derivative on the axis. For non-axisymmetry, the
eigenfunction has opposite signs either side of the axis, hence, the eigenfunction must be
zero on the axis. In equation form, the inner boundary conditions at k=1 are written as

1p̂1

1r
=0, n=0; p̂1 =0, n$ 0. (39)

The outer boundary condition was defined by equation (13) and from matching B0 =0.
Taking the ratio of the two outermost grid points to eliminate A0, we rearrange the results
to obtain

−
H(1)

n (ilrN+1)
H(1)

n (ilrN )
p̂N + p̂N+1 =0 (40)

for the outer boundary condition.

2.7.3 Methodology of numerical solution
Equations (38), (39) and (40) create a tridiagonal system of equations that can be written

as

A(c)p=0. (41)

This equation forms a generalized eigenvalue problem [50] which has a non-trivial solution
only when

det [A(c)]=0. (42)

The determinant of A is easily calculated as the product of the diagonal terms in an
LU-decomposition of A.

The solution of equation (42) requires an initial guess for the eigenvalue c. The form
of this equation provides an easy means of finding an initial guess. For a complex c, the
determinant of A is, in general, also complex. Setting up a grid over the region in which
the eigenvalue is suspected to lie, the determinant of A is calculated at each point. Contours
are then drawn through the region that define the zeroes of the real part and the imaginary
part of det [A(c)]. These contours only cross at the eigenvalue. Once the initial guess for
the eigenvalue is made, refinement of its value is achieved using the Newton–Raphson
iteration method.

For a typical instability wave calculation, the eigenvalue must be found at every axial
location for a given frequency v. The contour grid method is performed at the first
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upstream profile. Thereafter, the eigenvalue solution at the previous axial location can be
used as the initial guess for the eigenvalue at the next axial location. Extrapolating the first
guessed eigenvalue at the next axial location from previous values often speeds up the
convergence, as long as the mean flow profiles are slowly changing.

2.7.4. Contour solution
The numerical solution set out above has been discussed in terms of growing eigenvalues

where ci q 0. Implicit in the discussion was that the solution can then be calculated along
the real r-axis. However, in order to continue the inviscid stability calculations into the
damped region, ci Q 0, it is well known that a contour deformation must be made into
the complex r-plane to avoid the critical point, rc, at which c− ū(rc )=0 [26, 40, 51, 52].
If all of the variables in equation (37) are assumed to be analytic, then any contour can
be chosen that avoids the critical point [53]. In our case, however, ū and r̄ are only known
on the real axis. To obtain their values in the complex plane, a Taylor series expansion
is taken about the real axis. This analytic continuation into the complex plane was found
to be simpler to calculate along a simple box path around rc rather than using complex
mapping.

The direction of the contour into the complex r-plane is determined from the derivative
of the mean velocity profile. For normal profile jets, 1ū/1rE 0. The critical point for a
growing mode lies in the lower half-plane and passes into the upper half-plane when
damped. The contour for damped waves must then go into the upper half-plane to go
around the critical point, since the branch cut associated with the critical point goes to
−a in the direction of the negative imaginary axis. The reverse is true for the inverted
profile jet where, in the inner shear layer, 1ū/1rq 0. The contour must go below the
damped critical point in the lower half-plane as the branch cut goes to +a.

Once the numerical differencing along the contour was completed, the system of
equations was found to be augmented by the number of grid points that were added along
the vertical parts of one or two box contours [37]. The formalism of the solution as
previously described did not change as the calculations proceeded from the growing to the
damped eigenvalue solutions.

2.7.5. Near and far field pressures
Both the near field pressure solution, equation (31), and the far field pressure directivity,

equation (34), depend upon the Fourier transform of the instability wave; equation (32).
We can use the fast Fourier transform (FFT) to perform the calculations [54]. Using the
trapezoidal rule, equation (30) is written as

fj =fj−1 + 1
2(aj + aj−1)(xj − xj−1), (43)

where f0 =0 and j=1, 2, . . . , J.
Setting A
 0 =1, the discrete Fourier transform of the instability wave becomes

{exp (ifj )}m = s
M−1

j=0

exp(ifj ) e−i2pmj/M, (44)

where, by definition for jq J, exp(ifj )=0. With Mq J, we have zero padded the
FFT of the instability wave and increased the resolution in the wavenumber spectrum,
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since
Dh=2p/MDx. (45)

Finally, the wavenumber spectrum of the instability wave is given by

g(hm )=
Dx
2p

{exp(ifj )}m , (46)

where

hm =6mDh,
(m−M)Dh,

0EmEM/2−1,
M/2EmEM−1.

(47)

The first half of the FFT contains the spectrum for positive wavenumbers and the second
half contains the spectrum for the negative wavenumbers.

To solve for the near field pressure, we recognize that equation (31) has the form of a
convolution integral that is being solved in the transform domain. A formulation has been
devised for correctly solving a two-dimensional form of this equation in which the
propagator function, in our case H(1)

n , is known analytically [55, 56]. The formulation is
easily written for our one-dimensional problem where (ignoring the u and t dependences)
equation (31) becomes

p'(r, xj)= {{exp(ifj )}mH(1)
n (il(hm )r)}j (48)

and the inverse discrete Fourier transform is defined by

{fm}j =
1
M

s
M−1

m=0

fm ei2pmj/M, (49)

hm is defined in equation (47). To reduce errors, the zero padding in equation (44) must
have Me 2J. Further possible errors are minimized by replacing H(1)

n in equation (48) by
an integrated average over the wavenumber resolution Dh at each hm [56].

The far field directivity is determined directly by substitution of equation (46) into
equation (34) and using only positive wavenumbers. For each hm , the angular dependence
c is determined from the inverse of equation (35) up to the limit set by equation (36).

2.7.6. Numerical accuracy
The system of equations represented by equation (41) is second order accurate on the

real axis for the numerical differencing of the disturbance pressure. However, the mean
flow quantities, as shown in Part 1 of this paper [31], are found from a first order accurate
numerical scheme. This formally reduces the accuracy of the numerical eigenvalue problem
to the first order dependent on the r-grid spacing used in the mean flow calculations. The
effect of grid spacing on the eigenvalue calculations is shown in Figure 3 for a compressible
jet. (Mean flow spreading parameters are shown in Figure 5 of Part 1). For the initially
thin axisymmetric shear layer, the growth rate and phase velocity for the first helical mode
at fD1/U1 =0·2 where D1 is the jet exit diameter, are underestimated if the grid resolution
is insufficient. As the flow expands downstream and the shear layer becomes larger, the
eigenvalue results converge to the same value. The ability to calculate the correct
eigenvalue is primarily dependent on accurate values for the first derivatives of the mean
flow quantities. For the initial thin shear layer, the edges of the shear layer are sharp, with
rapid changes in the derivative values. With a course grid, these values are inaccurately
represented. As the flow smooths out, the derivatives change more gradually and the
numerical representation for the derivatives is more accurately obtained with the course
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Figure 5. A comparison of results from the far field directivity calculations for a single jet: n=1, fD1/U1 =0·4.
See Figure 4 for legend.

grid. Thus, a fine grid is initially required to obtain accurate representation of the mean
flow derivatives at the edges of the thin shear layer.

2.8.    

The numerical procedures described in this paper, and in Part 1 [31], are designed to
use the jet exit operating conditions as the only known inputs into calculating the local
stability characteristics and the far field directivity patterns of axisymmetric jets with both
single and dual systems. This allows a wider variety of operating conditions to be studied

Figure 6. The stability characteristics for a NVP coaxial jet as a function of local shear layer half-width b:
fD1/U1 =0·2. Calculated results using numerically generated mean flow: inner shear layer, ———, n=0; ----,
n=1; outer shear layer, — — —, n=0; — - — -, n=1. Results from reference [23] mean flow defined by analytic
functions: inner shear layer, w, n=0; q, n=1; outer shear layer, e, n=0; r, n=1. (a) Phase velocity relative
to ambient speed of sound; (b) growth rate.
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T 1

Operating conditions for the supersonic coaxial jet calculations

AR r s U1 (m/s) U2 (m/s) T1 (K) T2 (K) M1 M2

Reference jet
— — — 1330·0 — 1100·0 — 2·0 —

NVP jets
1·25 0·80 1·00 1477·8 1182·2 1086·4 1086·4 2·2 1·8
1·25 0·60 1·00 1605·2 963·1 1032·6 1032·6 2·5 1·5
1·25 0·40 1·00 1662·2 665·0 916·7 916·7 2·7 1·1
1·25 0·20 1·00 1583·3 316·7 727·5 727·5 2·9 0·6
1·25 0·80 2·00 1534·6 1227·7 1692·3 846·2 1·9 2·1
1·25 0·60 2·00 1750·0 1050·0 1608·2 804·1 2·2 1·8
1·25 0·40 2·00 1900·0 760·0 1396·8 698·4 2·5 1·4
1·25 0·80 0·50 1425·0 1140·0 785·7 1571·4 2·5 1·4
1·25 0·60 0·50 1492·8 895·7 754·5 1509·1 2·7 1·2
1·25 0·40 0·50 1511·4 604·5 694·4 1388·9 2·9 0·8
1·00 0·80 2·00 1516·7 1213·3 1630·7 815·3 1·9 2·1
0·75 0·80 2·00 1492·8 1194·3 1552·2 776·1 1·9 2·1
0·50 0·80 2·00 1459·7 1167·8 1448·8 724·4 1·9 2·2
1·00 0·40 2·00 1813·6 725·5 1350·0 675·0 2·5 1·4
0·75 0·40 2·00 1716·1 686·5 1297·7 648·8 2·4 1·3
0·50 0·40 2·00 1605·2 642·1 1239·1 619·5 2·3 1·3

Area ratio AR=A2/A1; velocity ratio r=U2/U1; density ratio s= r2/r1 =T1/T2, (constant thrust and constant
mass flow).

without relying on measured mean flow parameters, especially in the case of supersonic
coaxial jets, for which mean flow data are hard to obtain. To validate our procedures, we
chose both single axisymmetric jet and coaxial jet cases, in which both the mean flow was
defined and the stability calculations had been completed under supersonic conditions. The
results from our stability calculations have been compared with the results from these
reference cases, in which the mean flow was represented by analytic functions for the axial
velocity and by Crocco’s relation for the density, an approach typically used in past studies
of jet stability characteristics. For the far field directivity patterns, our calculated results
are compared with results from calculations using analytic functions to describe single
axisymmetric jet mean flows.

A single, hot, Mach 2, perfectly expanded jet was defined by measurements taken by
Seiner et al. [57]. The measured jet parameters included the centerline velocity, the radius
to the half-velocity point, and the half-width of the mixing layer, all as functions of axial
distance. These parameters were used to define the mean flow velocity by a half-Gaussian
analytic function, which was then used in the stability calculations [33]. Example results
from these calculations for a single jet with a static temperature of 761 K are shown in
Figure 4 for the first helical mode (n=1) at a Strouhal number of 0·4 (open symbols).
Two comparisons are made with this analytic data using the numerical mean flow. The
first set of results use the mean flow generated with the turbulence model as defined in
Part 1 of this paper [31]. This mean flow overestimated the potential core length by 37%
and had a lower spreading rate compared to measured data. Nonetheless, our calculations
give similarly shaped growth rate and phase velocity curves (dashed lines in Figure 4). In
the second set of results, the mean flow calculations are modified to match the potential
core length of the measured mean flow data. This is done by increasing the coefficient in
the turbulence mode [58]. The stability calculations result in growth rates and phase
velocities that are in better agreement with the analytical calculations. The discrepancies
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are now due to an inexact match for the shear layer spreading rate and differences in profile
shaping. The latter has been shown to cause differences in stability calculations [59].

The corresponding far field directivity patterns for these single jet stability calculations
are shown in Figure 5. These results show the relative insensitivity of the peak direction
in the far field directivity pattern to moderate changes in the mean flow profile shape and
the jet shear layer spreading rate. Thus, we have shown that the numerically generated
mean flow can provide reasonable input profiles for calculating stability and noise results
that compare favorably with results from analytical calculations based on measured jet
parameters for single axisymetric jets. Furthermore, other jet operating conditions can be
chosen in which no measured data exists in order to study the relative changes that occur
in the stability and noise generation characteristics of a supersonic jet.

No set of mean flow measurements have been taken in a supersonic coaxial jet and used
to create a set of axially varying parameters for analytic function descriptions of both the
mean flow velocity and density at all axial locations. However, Bhat and Seiner [23]
developed an analytic model for the initial mean flow of a supersonic coaxial jet for the
purpose of conducting stability calculations. They modelled the two shear layers separately
which enabled them to define the mean flow out to the end of the outer potential core.
Due to a lack of measured data, they recognized that they could not continue the analytic
function flow modelling into the merging and fully developed flow regions downstream.
The mean velocity profiles were defined by half-Gaussian functions and the spreading rates
were determined from the Langley curve. Crocco’s relation was used to define the mean
density profiles. For the stability calculations, the Rayleigh equation was integrated
numerically across each shear layer separately, using analytic functions in the regions of
constant mean flow properties to define the four boundary conditions. These calculations
resulted in local growth rates and phase velocities as a function of axial distance. An
example of their results is shown in Figure 6 for an NVP jet with the following operating
conditions: R2/R1 =3·0, M1 =M2 =1·48, U2/U1 =0·52, T2/T1 =0·27, Ta/T1 =0·37. Both
axisymmetric (n=0) and first helical (n=1) modes are shown for a Strouhal number of
fD1/U1 =0·2. The results are plotted against the local shear layer half-width appropriate
to the shear layer with which the eigenvalue is identified; either the inner or outer shear
layer. For comparison, the results from our stability calculations are shown in the same
figure. Given that no attempt was made to match the spreading rate in the numerical mean
flow model to the spreading rates used for the analytic function profiles, the numerical
results are very similar to the analytic results when plotted versus the local shear layer
half-width. Where the shear layers are thin, the growth rates and phase velocities are
almost identical. The primary differences that occur downstream can be attributed to the
differences in profile shaping.

The results shown in Figure 6 for a NVP jet validate our procedure for stability
calculations in coaxial jets. The reference analytic function calculations seek to find the
eigenvalues in each shear layer by integrating the Rayleigh equation across each layer
separately and coupling the integrations through the boundary condition in the outer
potential core; whereas we do not use an intermediate boundary condition, but integrate
across the total jet flow using only an outer free stream boundary condition and a
symmetry boundary condition on the jet centerline. Thus, the effects of the presence of
the two shear layers is directly coupled within the calculations.

3. NUMERICAL PREDICTIONS

The mean flow formulation from Part 1 of this paper [31] and the stability wave noise
generation model from the previous section were used to study the effect of changing
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various operating parameters on the instability wave noise generation from perfectly
expanded, supersonic NVP coaxial jets. We chose the operating conditions to have the
same total thrust, mass flow, and exit area as a single reference jet using the formulations
given in Dahl [37]. The values chosen for the present study are shown in Table 1. The single
reference jet had an exit velocity of 1330 m/s and an exit static temperature of 1100 K

Figure 7. Growth rates and phase velocities relative to the ambient speed of sound for both shear layers of
a NVP jet with U2/U1 =0·6, r2/r1 =1·0, and AR=1·25. The legend defines lines with numbered pairs (fDe/Ue ,
maximum amplitude from equation (50)). (a) n=0, inner shear layer: ———, 0·06, 1·162; ----, 0·12, 1·358;
— — —, 0·20, 1·632; — - — -, 0·40, 2·583. Outer shear layer: ———, 0·06, 1·252; - - - -, 0·12, 1·710; — — —,
0·20, 2·126. (b) n=1, inner shear layer: ———, 0·06, 1·320; ----, 0·12, 1·731; — — —, 0·20, 2·380; — - — -, 0·40,
4·170. Outer shear layer: ———, 0·06, 4·711; - - - -, 0·12, 4·585; — — —, 0·20, 4·207; — - — -, 0·40, 4·124.



  685

Figure 8. The effects of the velocity ratio and the Strouhal number on the maximum amplitude of instability
waves in the inner shear layer: n=1, r2/r1 =1·0, AR=1·25.

resulting in an exit Mach number of 2. When scaled up, this jet would produce thrusts
and mass flows comparable to those projected for supersonic jet transport aircraft engines.

3.1.  

The mean flow prediction scheme was used to determine the development of the mean
velocity and density profiles. These profiles were used to solve for the eigenvalues of the
Rayleigh equation at every axial location. The real and imaginary parts of the eigenvalue
may be identified with the local phase velocity and growth rate of the instability wave.
Typical calculated values are shown in Figure 7 for an NVP jet, where part (a) contains
results for the axisymmetric (n=0) mode and part (b) contains results for the first helical
(n=1) mode. The NVP jet had a velocity ratio of U2/U1 =0·6 (indicating that the outer
shear layer was larger in DU than the inner shear layer), a density ratio of r2/r1 =1·0, and
an area ratio AR=1·25. The calculations were performed at four Strouhal numbers
fDe /Ue , where Ue and De are the exit velocity and diameter, respectively, of the reference
jet and f is the cyclical frequency. This means that the calculations for each shear layer
were performed at the same frequency. In the figure are indicated the axial location of the
end of the outer potential core (where the two shear layers begin to merge), the axial
location at which the two shear layers completely merge into a single shear layer, and the
axial location of the end of the inner potential core. Also, an indication is given in the
figure of the shear layer with which the stability characteristic is initially associated (inner
and outer) and the maximum amplitude that the instability wave achieves relative to its
initial amplitude. All of the stability characteristics shown are of the Kelvin–Helmholtz
type. At Strouhal number 0·40, no Kelvin–Helmholtz type instability is found for the outer
shear layer in the case of the n=0 mode. All of the phase velocities shown are supersonic
relative to the ambient speed of sound.

For the inner shear layer n=0 mode, shown in Figure 7(a), stability calculations are
continued downstream as far as possible until the phase velocity approaches the inner core
velocity. After this point, no stability solutions are found. As the Strouhal number
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increases, the inner shear layer growth rates increase while the phase velocities decrease.
The instability wave continues to grow beyond the end of the outer potential core and
slightly beyond the end of the merge region, but they are starting to damp soon after the
merging of the shear layers.

The outer shear layer n=0 mode stability characteristics are also shown in Figure 7(a).
The initial growth rates also increase with Strouhal number and are larger than the
comparable inner shear layer growth rates, but these growth rates decay more quickly than
the inner shear layer growth rates. The outer shear layer phase velocities are lower than
the inner shear layer phase velocities due to lower mean flow velocities, but they also
decrease with increasing Strouhal number as do the inner shear layer phase velocities.
These calculations are conducted until the phase velocity approaches the mean flow
velocity at the point where the two shear layers are merging. As this happens, the damping
rates start to increase toward larger values. Then, in the stability calculations, the critical
point typically goes beyond the region in which the mean flow values in the complex plane
are accurately calculated by analytic continuation and the calculations are stopped.

It is shown in Figure 7(b) that the initial growth rates in the inner shear layer for the
n=1 mode increase with Strouhal number. Unlike the n=0 mode, these instability waves
begin to damp at or soon after the end of the merge region. The phase velocities gradually
increase with Strouhal number.

For the outer shear layer, the n=1 mode growth rates shown in the figure initially
increase with Strouhal number and are much larger than the inner shear layer growth rates.
However, like the n=0 mode, these growth rates decay more quickly than the inner shear
layer growth rates, except for the Strouhal number 0·06 growth rates.

For the normal profile coaxial jet, the question arises of what happens to the two initially
growing instability waves as the streams merge downstream into a single fully developed
jet. This single jet would only have one n=1 mode inviscid damped solution. Typical
results from the stability calculations for a normal velocity profile jet are shown in
Figure 7(b). With two shear layers, each having an initially growing instability wave, only

Figure 9. The effects of the velocity ratio and the Strouhal number on the maximum amplitude of instability
waves in the outer shear layer: n=1, r2/r1 =1·0, AR=1·25.
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one of the two has a continuous solution into the downstream damped region of the single
fully developed jet. The shear layer with the larger DU supports the lower Strouhal number
waves that are continuous into the damped region and the shear layer with the smaller
DU supports the higher Strouhal number waves. As can be seen, if the instability wave
characteristics are continuous into the damped region in one shear layer, it is not
continuous into the damped region in the other shear layer. The non-continuous instability
wave characteristics become highly damped in the same manner as seen for the n=0 mode.
Again, in the stability calculations, the critical point goes beyond the path along which
accurate mean flow calculations by analytic continuation are available. The concept of two
eigenvalues merging is suggested by the behavior of the phase velocities. The inner shear
layer phase velocities in Figure 7(b) decrease to the single jet phase velocity as the solution
progresses downstream. In the outer shear layer, the phase velocities increase to the single
jet phase velocity. No indication is found in the continuous damped eigenvalue solution
that any other damped solution is nearby to suggest that the two solutions merge as the
mean flow becomes fully developed.

The growth rate and phase velocity results in Figure 7 are typical for all of the normal
velocity profile results. There are differences in the growth rate curves, especially, due to
varying velocity and temperature ratios between the two streams. However, to judge the
effects of operating condition changes, we will concentrate on comparing changes in the
maximum amplitude obtained by the instability wave as a relative indication of the
strength of the wave. The maximum amplitude is calculated by

Amax = b exp g
xc

0

a(x) dxb, (50)

where xc is the point at which ai =0. In Figure 7, we note that the maximum amplitudes
for the n=1 modes are always larger than the maximum amplitudes for the n=0 modes.
Since for noise purposes we are interested in reducing the largest levels, in the remaining
examples, we will only present the n=1 results.

3.2.    

To study the effects of velocity ratio in an NVP jet, the area ratio is fixed at 1·25 and
the density ratio is fixed at 1·0. This results in a decrease in the static temperature of both
streams as the velocity ratio decreases, as shown in Table 1, when the total thrust, mass
flow and exit area are held constant. As the velocity ratio decreases from 0·8 to 0·2, the
inner stream first increases in velocity and then begins to decrease before the velocity ratio
equals 0·2 and the outer stream decreases in velocity. The Mach numbers increase
continually for the inner stream and decrease for the outer stream. The effects of these
changes on the growth of the first helical mode instability waves in both the inner and outer
shear layers at four different Strouhal numbers are shown in Figures 8 and 9 in terms of
the maximum amplitude of the instability waves calculated from equation (50). In both
figures, the results are for Kelvin–Helmholtz type instability waves with supersonic phase
velocities relative to ambient. The amplitude is set to zero in the figures if no wave of this
type was found in the shear layer for the given operating conditions and Strouhal number.
For example in Figure 9, the velocity ratio 0·2 case has a subsonic outer flow; hence, the
instability waves have subsonic phase velocities.

In Figure 8 is shown the maximum amplitude of the instability waves in the inner shear
layer as a function of the velocity ratio and the Strouhal number. These results follow the
trend described by Michalke and Hermann [60] for an axisymmetric jet with an external
flow. As the outer flow increases relative to the inner flow, that is, as the velocity ratio
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Figure 10. The effects of the velocity on the far field directivity patterns for noise radiated from instability
waves in the inner shear layer. Numbers indicate peak amplitudes; n=1, r2/r1 =1·0, AR=1·25. (a) Reference
jet. NVP jet with U2/U1 = (b) 0·8, (c) 0·6, (d) 0·4 (e) 0·2. Strouhal number: — - — -, 0·006; — — —, 0·12; ----,
0·20; ———, 0·40.

increases, the maximum instability wave amplitudes decrease. This occurs for all four
Strouhal numbers shown in the figure. However, we note that for U2/U1 Q 0·5, where
the inner shear layer has a larger DU than the outer shear layer, the instability waves
continue to grow beyond the point at which the two shear layers merge into a single
shear layer until they begin to decay before the end of the inner potential core. This
allows the instability waves to grow to relatively large amplitudes. In contrast, when
U2/U1 q 0·5 and the inner shear layer has a smaller DU than the outer shear layer, the
instability waves stop growing and begin to decay in the region in which the two shear
layers merge into a single shear layer. Thus, the instability wave in the inner shear layer
is not only affected by the outer jet flow, but it is also affected by the presence of the
outer shear layer.

When the outer shear layer is larger than the inner shear layer, U2/U1 q 0·5, the
instability waves in the outer shear typically grow to greater amplitudes than those
instability waves in the inner shear layer; compare Figure 9 with Figure 8. However, the
large outer shear layer instability waves do not have as great an amplitude as the larger
growing instability waves in the inner shear layer. The outer shear layer spreads more
rapidly than the comparable size inner shear layer, since the velocity ratio across the outer
shear layer is always near zero, which results in the fastest spreading rate for a shear layer.
As the velocity ratio increases, the spreading rate will decrease. Thus, the outer shear layer
local growth rates reach zero sooner in the axial direction.
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The far field directivity patterns associated with the sound radiated by these instability
waves are shown in Figure 10 for the inner shear layer instability waves and in Figure 11
for the outer shear layer instability waves. In both figures, the far field directivity patterns
for the reference jet instability waves are shown for comparison. In the calculations, the
initial instability wave amplitudes are set to 1, indicating that the assumption is used that
the instability waves are excited by white noise at the nozzle exit [44]. Thus, the relative
levels between different Strouhal number peaks are an indication of the relative levels of
noise radiated by the different growing and decaying instability waves in each shear layer.
The far field radiated noise for the reference jet is set to an arbitrary level and all NVP
jet results are referenced to the same level. This allows comparisons to be made of the
relative changes in noise radiation that occur when operating conditions are changed.

As the instability waves grow in the inner shear layer as the velocity ratio decreases, the
noise radiated to the far field grows as shown in Figure 10. The radiated noise could grow
to be larger than that radiated from the reference jet. This is the same type of trend noted
by Tanna [7] for subsonic NVP jets at constant thrust, mass flow and exit area conditions.
We also note that the inner shear layer promotes the growth of and the noise radiated from
the higher Strouhal number instability waves relative to the lower Strouhal number
instablity waves when comparing the noise radiated from the inner shear layer for
U2/U1 E 0·6 with the noise radiated from the reference jet.

The far field directivity patterns associated with the outer shear layer instability waves
are shown in Figure 11. For U2/U1 =0·8, the outer shear layer is still large enough so that

Figure 11. The effects of the velocity on the far field directivity patterns for noise radiated from instability
waves in the outer shear layer. Numbers indicate peak amplitudes; n=1, r2/r1 =1·0, AR=1·25. See Figure 10
for legend.
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Figure 12. Contours of the constant compressible spreading rate, with a dashed line for the inner shear layer
spreading rate of NVP jet with constant thrust, mass flow and exit area conditions: U2/U1 =0·4.

the relative levels of noise radiated from the lower Strouhal number instability waves are
the same as that of the reference jet. However, due to the lower Mach number in the outer
jet stream compared to the reference jet, the highest Strouhal number shows lower relative
levels of radiated noise. As the velocity ratio continues to decrease, the Mach number
decreases, causing the directivity peaks to shift toward zero degrees, the jet axis, as the
phase speeds of in the instability waves decrease. At U2/U1 =0·2, the Mach number is
subsonic and no instability wave components have supersonic phase speeds relative to

Figure 13. The effects of the density ratio and the Strouhal number on the maximum amplitude of instability
waves in the inner shear layer: n=1, U2/U1 =0·4, AR=1·25.
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Figure 14. The effects of the density ratio and the Strouhal number on the maximum amplitude of instability
waves in the outer shear layer: n=1, U2/U1 =0·4, AR=1·25.

ambient. Thus, no noise radiates from the large scale structures at the chosen Strouhal
numbers.

3.3.    

Many studies have been conducted about the effects of density ratio on the growth of
instabilities and the spreading rates of planar and jet shear layers. Results for the
normalized spreading rate show that this parameter decreases as the convective Mach
number for the shear layer increases. In measurements of coaxial jets, Gutmark et al. [61]
presented the measured compressible spreading rate non-normalized, as a function of
velocity and density ratios. They concluded that, regardless of the convective Mach
number, the compressible spreading rate and the level of instability increase for the inner
shear layer as the velocity ratio decreases and as the density ratio increases. Our results
for velocity ratio effects (Figure 8) agree with this conclusion. We will now consider the
effects of density ratio in coaxial jets using two examples to illustrate our results.

In the first example, the velocity ratio between the outer and inner jet streams is fixed
at 0·4; thus, the inner shear layer DU is larger than the outer shear layer DU. While
maintaining the total thrust, mass flow and exit area constant and the area ratio set to
1·25, the density ratio is changed over three different values: 0·5, 1·0 and 2·0. The operating
conditions are given in Table 1. Note that as the density ratio increases, the velocities in
both streams decrease; however, due to the variations in temperatures, the Mach number
increases for the inner stream and decreases for the outer stream. This set of operating
conditions leads to the results that the initial spreading rate of the inner shear layer, based
on the vorticity thickness, decreases from 0·0346 to 0·0311 as the density ratio is increased.
This result tends to contradict the general remarks made by Gutmark et al. [61] because,
as shown in Figure 12, the conclusion that one draws about the effects of density ratio
on the compressible spreading rate depends on the path taken through the parameter
space. The figure shows contours of compressible spreading rate d'v, as defined from
combining equations (A1), (A3) and (A4) in Part 1 of this paper [31], as a function of the
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density ratio across the inner shear layer and the Mach number of the inner high speed
stream. The dashed line is the path through the spreading rate space when the operating
conditions are changed while maintaining a constant thrust, mass flow and exit area for
the coaxial jet with U2/U1 =0·4. As can be seen, the compressible spreading rate along
this path goes to a minimum at about a density ratio of 1·8. For the density ratio decreasing
or increasing from this point, the compressible spreading rate increases. How this result
affects the growing instability waves for r2/r1 E 2 is discussed next.

The maximum amplitudes of the growing n=1 instability waves in the inner shear layer
are shown in Figure 13 as a function of the density ratio and the Strouhal number. At
lowest Strouhal number, 0·06, the maximum amplitude increases with density ratio with
the largest increase, 53%, occurring between the lower density ratios. At the three higher
Strouhal numbers, the maximum amplitudes increase on average about 12% as the density
ratio changes from 0·5 to 1·0; however, as the density ratio is increased to 2·0, the
maximum amplitude decreases slightly. Since these instability waves occur in the larger
shear layer, they continue to grow downstream past the point at which the two shear layers
merge. Thus, these results indicate the balance between the amount of initial instability
wave growth and the amount of growth that occurs after the shear layers fully merge. For
a density ratio of 0·5, the initial growth is less, since the inner shear layer has the highest
spreading rate resulting in a lower maximum amplitude. For a density ratio of 2·0, the
initial growth is comparable to that at a density ratio of 1·0; however, after the two shear
layers fully merge, the density ratio 2·0 mean flow spreads more rapidly than the density
ratio 1·0 mean flow, resulting in the local growth rates decreasing more rapidly at the
higher Strouhal numbers for density ratio 2·0 than for the density ratio 1·0. Thus, the
maximum amplitude is diminished for the r2/r1 =2·0 case as compared to the r2/r1 =1·0
case.

For the outer shear layer n=1 instability waves, the maximum amplitudes are shown
in Figure 14. Growing Kelvin–Helmholtz type instabilities were found only at the lower
Strouhal numbers. The density ratio across the outer shear layer is decreasing as the

Figure 15. The effects of the density ratio and the Strouhal number on the maximum amplitude of instability
waves in the outer shear layer: n=1, U2/U1 =0·6, AR=1·25.
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Figure 16. Far field directivity patterns for NVP jets with varying area ratio: n=1, U2/U1 =0·8, r2/r1 =2·0,
outer shear layer. Numbers indicate peak amplitudes. (a) Reference jet. The area ratio is (b) 1·25, (c) 1·00, (d)
0·75 and (e) 0·50. Strouhal numbers: — - — -, 0·06; — — —, 0·12; ----, 0·20; ——, 0·40.

indicated density ratio increases across the inner shear layer. This corresponds to a
decrease in the outer shear layer spreading rate. In addition, since the outer shear layer
is smaller than the inner shear layer, the outer shear layer instability waves are driven
toward being damped before the two shear layers fully merge or, for higher Strouhal
numbers, before the end of the outer potential core. Thus, the maximum amplitudes shown
for the lower Strouhal numbers increase with a decrease in outer shear layer spreading rate
(density ratio increasing) and, for the higher Strouhal number, the maximum amplitudes
are affected by the rapid decrease in growth rates that occurs as the instability waves
approach the end of the short outer potential cores.

For the second example, the velocity ratio is increased to 0·6, making the outer shear
layer larger than the inner shear layer. The operating conditions are given in Table 1. The
behavior of the operating conditions follows the same pattern as in the first example when
the density ratio is changed but with lower Mach numbers for the inner stream and higher
Mach numbers for the outer stream. The combination of an increase in the velocity ratio
and corresponding changes in jet stream temperatures result in lower initial spreading rates
in both shear layers compared to the spreading rates in the previous example. For the
smaller inner shear layer, the lower initial growth rates for the instability waves, compared
to the U2/U1 =0·4 case inner shear layer growth rates, are damped out as this shear layer
merges with the larger outer shear layer, further lowering the maximum amplitude of the
instability wave. This results in a set of maximum amplitudes as a function of the density
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ratio and the Strouhal number that are similar in relative level to those shown in Figure 13,
but with typically half the amplitude. The more important growing instability waves for
this case are found in the larger outer shear layer. Here, the lower Strouhal number
instability waves continue to grow beyond the end of the outer potential core and into the
fully merged shear layer region. Thus, as shown in Figure 15, these instability waves obtain
large relative maximum amplitudes especially for r2 /r1 e 1·0. Again, as in the previous
example, the density ratio across the outer shear layer is decreasing as the density ratio
across the inner shear layer increases, promoting a decrease in the outer shear layer
spreading rate. This leads to higher instability wave amplitudes as the slowly spreading
shear layer allows the wave to grow further downstream.

3.4.    

The general effect of decreasing the area ratio on the mean flow is to decrease the length
of the outer potential core and to cause the two shear layers to merge faster. This would
then affect the growth and decay of the instability waves and the resulting radiated noise.
Two examples of the effects of area ratio changes on radiated noise are shown in Figures 16
and 18. In each figure are shown the relative amplitudes of the far field noise radiation
patterns associated with four Strouhal numbers with the peak levels labelled on the figures.
For a velocity ratio U2/U1 of 0·8, in Figure 16 it is shown that changing the area ratio
has little impact on the relative levels of radiated noise from the instability waves in the
outer shear layer. The velocity difference across the outer shear layer is much larger than
that across the inner shear and the radiated noise from the outer shear layer instability
waves dominates in the far field. As shown in Figure 17, the unchanging far field levels
are due to similarities in the local growth rates of the instability waves in the large outer
shear layer. The figure shows the location where the two shear layers begin to merge at
the end of the outer potential core (vertical lines) as the area ratio changes. Even as the
area ratio becomes smaller and the shear layers merge closer to the nozzle exit, the
instability waves in the outer shear layer are not significantly affected by merging the
smaller inner shear layer sooner with the much larger outer shear layer.

In contrast, in Figure 18 is shown what happens when the two shear layers have nearly
the same velocity differences. Here, the velocity ratio is 0·4, making the inner shear layer
velocity difference slightly larger than the outer shear layer velocity difference, resulting

Figure 17. Instability wave local growth rates for NVP jets with a varying area ratio: n=1, U2/U1 =0·8,
r2/r1 =2·0, outer shear layer. Area ratio: — - — -, 1·25; — — —, 1·00, ----, 0·75; ———, 0·50. Strouhal number:
(a) 0·40; (b) 0·06.
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Figure 18. Far field directivity patterns for NVP jets with a varying area ratio: n=1, U2/U1 =0·4, r2/r1 =2·0,
inner shear layer. Numbers indicate peak amplitudes. See Figure 16 for legend.

in the inner shear instability wave dominating the outer shear layer instability wave. As
the area ratio decreases, the lower Strouhal number far field amplitudes increase while the
higher Strouhal number amplitudes decrease. The reason for this is shown in Figure 19.
At a Strouhal number of 0·4, the local growth rate of the inner shear layer instability wave

Figure 19. Instability wave local growth rates for NVP jets with a varying area ratio: n=1, U2/U1 =0·4,
r2/r1 =2·0, inner shear layer. See Figure 17 for legend.
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decreases faster as the shear layers merge sooner with a decreasing area ratio. The larger
downstream merging shear layer is unable to continue to support this shorter wavelength
instability wave; its growth rate slows and it begins to decay sooner. In contrast, the growth
rates for the longer wavelength, lower Strouhal number 0·06 case are enhanced by the
earlier merging of the two shear layers. The instability wave grows to a higher amplitude
before it begins to decay, a process that is governed by the single fully merged jet
downstream.

4. CONCLUDING REMARKS

The noise generation from supersonic coaxial jets has been studied in this paper by
extending the instability wave, noise generation model for single stream, axisymmetric jets
to dual stream, coaxial jet. For high speed, perfectly expanded, axisymmetric jets, the
instability waves or large scale coherent structures dynamically control the development
of the free shear flow, and when the instability wave phase velocity exceeds the ambient
speed of sound, these waves are the dominant source of mixing noise radiated into the
downstream arc of the jet. Linear instability wave analysis is applied to the jet shear layer
to obtain the characteristics that describe a growing and decaying instability wave and,
subsequently, predict the radiated noise. These concepts, which have been applied to single
jets with a single spreading shear layer, are now applied to a coaxial jet with two spreading
shear layers.

The stability analysis was completed for a slowly diverging free jet shear layer with the
assumption that the mean static pressure was constant. To lowest order inside the jet, the
analysis resulted in an eigenvalue problem based on the compressible Rayleigh equation
that gave local growth rates and phase velocities at each axial location as the mean flow
developed. These local stability characteristics were used to calculate growing and decaying
instability waves in the jet shear layers. Outside the jet, the instability wave was the source
for near field pressure disturbances. For those instability wave components with supersonic
phase velocities relative to ambient, the instability wave was the source of far field radiated
noise. The results from stability calculations conducted for both single and coaxial
supersonic jets in this study using numerically generated mean flow profiles compared
favorably with the results from studies using analytical formulations to describe the mean
flow.

Since the instability wave noise generation model lacks the ability to predict the absolute
amplitude of the radiated noise, we are left to infer the effects of changes in operating
conditions on radiated noise by how the growing instability waves are affected. With the
initial amplitudes of the instability waves set to 1, we were assuming that the instability
waves were generated by white noise at the nozzle exit. Thus, the relative levels of the
different Strouhal number peaks of the far field directivity patterns followed the same
relative level pattern as the maximum amplitudes of the instability waves that had peak
components with supersonic phase velocities. The lower Strouhal numbers dominated in
the outer shear layer and had directivity patterns with wide peaks. The higher Strouhal
numbers dominated in the inner shear layer and had narrow peaks. The manipulation of
operating conditions has shown that the peak levels of mixing noise radiated from the
reference jet at lower Strouhal numbers and at angles of about 50 degrees to the jet exit
axis could be shifted to higher Strouhal numbers and larger angles of about 70 degrees
by using normal velocity profile jets. It would then be easier to reduce this higher frequency
noise with a lined ejector shroud around the jet.

With the ability to numerically calculate mean flow profiles for NVP supersonic coaxial
jets and to use those results to calculate the stability characteristics of both shear layers,
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we conducted a parametric study of the effects of various operating conditions on the
instability waves in and the subsequent noise generation from these jets. We focused on
the effects of velocity ratio changes with a fixed density ratio of 1·0 and a fixed area ratio
of 1·25. Next, we fixed the velocity and considered the effects of changes in density ratio.
Finally, with both velocity and density ratios fixed, we varied the area ratio. Given that
all the NVP jets have the same thrust, mass flow and exit area as a single reference jet,
the following results were found for the stability characteristics:

(1) The stability characteristics for high speed NVP jets had the same trends as found
in measurements of low speed NVP jets. For U2/U1 Q 0·5, the dominant instability was
in the inner shear layer, and the higher amplitudes of these instabilities were at a higher
frequency than the outer shear layer instability wave amplitudes. Conversely, for
U2/U1 q 0·5, the dominant outer shear layer instability wave maximum amplitudes had a
lower frequency than those in the inner shear layer.

(2) For a given velocity ratio, the effect of the density ratio changes was to change the
spreading rates of both shear layers. As the spreading rate decreased, there was a tendency
for the instability wave to grow to a higher amplitude. However, in coaxial jets, the two
shear layers merged together and modified the growth rate of the dominant instability.
Results were shown where the maximum amplitude of the instability wave was diminished
by the effects of merging (Figure 13) and where the maximum amplitude was enhanced
(Figure 15) when the density ratio was increased from 1·0 to 2·0.

(3) The effect of area ratio changes was to cause the shear layers to merge closer to the
nozzle exit as the area ratio decreased. If the velocity ratio was large, this had little impact
on the growing instability wave when the large dominant shear layer merged with the
smaller shear layer. When the velocity ratio was moderate in size, contradictory effects
were found in the dominant instability waves of the larger shear layer. For lower Strouhal
numbers, the earlier merging enhanced the growth rate. Conversely, for higher Strouhal
numbers, the earlier merging diminished the growth rate.
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